مقایسه عملکرد مدلهای شبکه عصبی مصنوعی واتورگرسیون برداری در پیش بینی شاخص قیمت و بازده نقدی

Authors

  • سیما یزدانی دانشجوی دکتری حسابداری دانشگاه تهران
  • مولود فامیلیان عضو هیات علمی دانشگاه شریعتی
Abstract:

هدف این مقاله تجزیه و تحلیل های اقتصادی، پیش بینی صحیح و دقیق متغیرهای اقتصادی است. در این زمینه، روشهای مختلفی برای پیش بینی در اقتصاد وجود دارد، که از جمله آنها میتوان به مدلهای رگرسیون ، معادلات همزمان و... اشاره کرد. مدلهای سری زمانی نیز از جمله مدلهای اقتصادی می باشند که در آن پیش بینی مقادیر سری، بیش از هر چیز به عهده خودشان گذاشته می شود اما استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصاً غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضاً غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردار هستند، استفاده می شود. شبکه های عصبی، یکی از این روش های بدیع و در حال تحول است که در موضوعات متنوعی از قبیل الگوسازی، شناخت الگو، خوشه بندی و پیش بینی به کار رفته و نتایج مفیدی داشته است. در این مقاله، از شبکه های عصبی در پیش بینی سری های زمانی داده های اقتصادی استفاده کرده ایم. در این رابطه عوامل مختلف ساختاری، روش های مختلف یادگیری شبکه های عصبی و انتخاب و کاربرد مناسب داده ها در فرایند پیش بینی، مورد ارزیابی و بررسی قرار گرفته است و با مدل­های ساختاری و سری زمانی مانند اتورگرسیون برداری مقایسه گردیده است. در این پژوهش، از ابزارهای محاسباتی نرم افزار MATLAB و شاخص قیمت و بازده نقدی بورس اوراق بهادار تهران مابین سال های 1385 تا 1390 استفاده شده است. خلاصه نتیجه گیری و پیشنهادات حاکی از آن است که مدل شبکه های عصبی مصنوعی از عملکرد بهتری در پیش بینی مقادیر متغیرها برخوردار است .

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص بازدهی نقدی و قیمت سهام

مدل سازی پیش بینی متغیرهای مالی و اقتصادی با توجه به رفتار متغیرها، روش های گوناگونی دارد. تحقیق حاضر، چگونگی پیش بینی بازده سهام در بورس اوراق بهادار تهران را با دو مدل آربیتراژ و شبکه های عصبی مصنوعی مورد آزمون قرار داده است. برای این منظور از اطلاعات روزانه شاخص بازده نقدی و قیمت به عنوان متغیر وابسته و از اطلاعات روزانه قیمت سکه بهار آزادی، حجم معاملات کل بازار و قیمت دلار به عنوان متغیرهای...

full text

ارزیابی مدلهای شبکه عصبی مصنوعی ایستا و پویا در پیش بینی قیمت سهام

پیشبینی آینده در عرصه پویای اقتصاد و بازارهای مالی از جمله بازار بورس به یکی از مهمترین مسائل درعلوم مالی ارتقاء یافته است. همچنین، در دههی اخیر مدلهای شبکه عصبی به علت عملکرد واقع بینانهتر اینمدلها مورد توجه محققین قرار گرفته و از انواع مختلف آنها برای پیشبینی استفاده شده است. اکنون این سئوالمطرح است که، کدام یک از این مدلها قدرت بالاتری برای تبیین فرآیندهای آتی بورس را دارا میباشد؟ در( همین ر...

full text

پیش بینی بازده شاخص بورس اوراق بهادار با استفاده از مدلهای شبکه ها عصبی مصنوعی شعاع پایه

تا کنون برای پیش بینی بازده سهام و بازده شاخص از روش های متعددی استفاده شده است در این میان هوش مصنوعی و شبکه های عصبی مصنوعی یکی از روش های پیش بینی بازده شاخص بوده است. در حال حاضر به دنبال بررسی عملکرد شبکه عصبی شعاع پایه برای پیش‌بینی بازده شاخص هستیم. بدین منظور از شاخص بورس اوراق بهادار تهران استفاده شده است و عملکرد شبکه عصبی شعاع پایه و شبکه عصبی پرسپترون مقایسه شده‌اند. نوع آزمون عملکر...

full text

ارزیابی مدلهای شبکه عصبی مصنوعی ایستا و پویا در پیش بینی قیمت سهام

پیشبینی آینده در عرصه پویای اقتصاد و بازارهای مالی از جمله بازار بورس به یکی از مهمترین مسائل درعلوم مالی ارتقاء یافته است. همچنین، در دههی اخیر مدلهای شبکه عصبی به علت عملکرد واقع بینانهتر اینمدلها مورد توجه محققین قرار گرفته و از انواع مختلف آنها برای پیشبینی استفاده شده است. اکنون این سئوالمطرح است که، کدام یک از این مدلها قدرت بالاتری برای تبیین فرآیندهای آتی بورس را دارا میباشد؟ در( همین ر...

full text

مقایسه قدرت پیش بینی روش شبکه عصبی مصنوعی با سایر روش های پیش‏بینی: مورد قیمت چغندرقند

این مطالعه با هدف پیش­بینی قیمت اسمی و واقعی چغندرقند و مقایسه روش شبکه عصبی مصنوعی با سایر روش­ها صورت گرفت. پس از بررسی ایستایی سری­ها، تصادفی بودن متغیرها با استفاده از دو آزمون ناپارامتریک والد- ولفویتز و پارامتریک دوربین- واتسون بررسی شد. براساس نتایج این آزمون­ها سری قیمت اسمی چغندرقند به‏عنوان سری غیرتصادفی و قابل پیش­بینی و سری قیمت واقعی به‏عنوان سری تصادفی ارزیابی شد. دوره مطالعه نیز ...

full text

مقایسه عملکرد شبکه های عصبی مصنوعی و شبکه های عصبی موجکی در پیش بینی درصد شکستگی جو در کمباین برداشت

در این تحقیق، نحوه عملکرد شبکه های عصبی موجکی با شبکه ‌های عصبی مصنوعی در پیش بینی درصد شکستگی دانه های جو در کمباین مقایسه شد. شبکه‌های مزبور به صورت تابعی از درجه حرارت هوا، سرعت کوبنده، سرعت پیشروی کمباین، فاصله کوبنده و ضدکوبنده در جلو و عقب واحد کوبنده و درصد رطوبت جو آموزش داده شد. شبکه عصبی موجکی (RASP1) با دقت 2/90 درصد در پیش بینی شکستگی دانه جو به عنوان یک جایگزین مناسب برای شبکه‌های...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 21

pages  128- 140

publication date 2014-03-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023